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FLIGIIT AND WIND-TUNNEL CORRELATION OF

_; OF POOR QUALITY BOUNDARY-LAYER TRANSITION ON THE AEDC TRANSITION CONE

• : i -- David F. Fisher
_,. NASA Ames Research Center
,. ! Dryden Flight Reeearoh F_e/ltty
., Edwarde, California 93_23
i:ii U.S.A.

' _ N. Sam Dougherty, Jr.*,/

"_'_i Rockwell International
_ Huntsville. Alabama _S01

.)._. SUMMARY
.._ Transition and fluotuatlng surface-pressure data were acquired on a I0 ° included angle cone, twing the same

Tx'ansition was detected with a traversing pitot-presam'e px_be in contact with the surface. The au_ace-prcesure

i fluctuations were measmwd with microphcmes set flush in the cc_e am'face. Good cor_alation of end-of-transition
Reynolds number Re T was obtained between data from the lowex_-di_turbElee wind tunnels and flight up to a

boundary-layer edge Mash numbez', Me : 1.3. Above Me : 1.3, howevez,, this coot'elation deteriorates, with the

ii_'_i!!ji" flight ReT bein_ 35 to 30_ higher than the wind tunnel ReT at Me = 1.6. The end-of-transition Reynolds number "'

cmnwlated within ±30%with the surface-preasm'e fluctuations, according to the equation

1-°'"

_.'wP

•_"'-';._i B_oad paak_ in the powel, spectral density dist_Ibutiona indicated that Tollmien-Sehlichting waves were the
"i_-v" p_'obable cause of transition in flight and in some of the wind tunnels.

:i/.'. NOMENCLATURE

.._:_:. F nondlmensional peak center frequency, T temperature, K (°R)
.', (3_),Ve)/Ue 2•.:.: U velocity, mlasc (ftlseo)

:#,: f frequency,Hz U/v unitReynolds number, par m (pert)
.,.',

: Gz ff) power spectral density function X T end-of-transition location, cm (in)

i;:i-.y,. H 1963 standard atmosphere pressm, e X t onset-of-transition location, cm (in)
_,_,- altitude, m (it)

___, : L length of cone with extension, 113.0 em _ distance along a _ _ay from the cone
.... . (44.5 in) r. x, om (in) "'

_:"_ M Math number a cone angle of attack with respect to air- .
•_ _ stream 0deg

,, . p pressure, N/m 2 (Ib/fl 3) _ cone sideslip angle With x,espeet to Mr- _.-
,_.-! abeam, deg

."d" p' fluctuating pressoae, N/m 2 (ro/ft 3)
,"" " v kinematic viscosity, m3/seo (fl2/sec)

" : average static root-mean-square fluctuating _ cone azimuthal angle relative to cone top
'':i _ : center ray (Fig. 1Co)), deg• ', pressure, N/m 3 (_/f12)

r,

_.,"L : Subscripts:
:.._ q dynamic pressure, N/m 3 (lb/fl 2)
, -_- aw adiabatic wall

"" i Re T end-of-_ansW, on Reynolds number
'.. r_ e botmdal'y-Iayer edge

*': "_ Re T' end-of-transitionReynolds number not,./_.

.i•'._,_, corrected to adiabatic temperature mac maximum
,,'* ;

_': " Re t onast-of-transition Reynolds number p traversing pitot
_-_ t total

:".. _' Re z Reynolds number based on length from cone *,,:I_i" i apex w at wall

:i_.... *Formerly with ARe, Inc., Arnold Air Force Station, Tennessee 37._8, U,S.A.

'i
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u. in pitch piano 2 at st microphone on cone 3urfaee

(x = 06,0 cm (20 in)) * ,
in sideslip piano " J

frCO 8trOa _ _r:

t at forward microphone on cone surface
(x = 45.7 cm (18in))

1.0 INTRODUCTION

The importance of Reynolds number :n scaling aerodynmnle-raodal test results from wind tunnels to full-scale
flight vehicles is well known, and the data from the small models have to be suitably adjusted for Reynolds number

'_ effects. Because these adjustments are usually based on simple extrapolations or ratios of Reynolds number, they _"
introduce some errors. The viscous effects on the boundary-layer growth on a body are cumulative and can create
boundary-layer/shock interactions or separations at transonic and supersonic speeds that differ eignifieantly with
the scale-up from model to full-scale vehicles. The location at which the boundary layer changes from laminar to
turbulent flow influences boundary-layer growth and has a significant effect on these interactions and separations.

, Hence, tho transition Reynolds number based on the point of transition and on the unit Reynolds number is a key
parametar in the overall similitude of flow.

As pointed out by Potter and Whitfleld (Ref. 1), one canDct expect a constant value of transition Reynolds
number relative to a characteristic length Reynolds number when scaling transition-asnsitive data. As noted by
Morkovin (Ref. 2), there _re no clear-cut rules to ensure that the transition locations predicted for general body
shapes will be accurate. A common practice in wind-tunnel testing is to force transition with artificial trip devices,

_ particularly when there is a large mismatch in model and full-scale Reynolds numbers. The fixing of transition
provides a gross approximation of the flow, even though the discrete characteristice of the boundary layer on the
model may not be the same as on the full-scale vehicle. The usual correction is to subtract out the skin friction of

' the model, using a flat-plate friction law for the wind-tunnel Reynolds number, then adding back the skin friction
for the full-scale vehicle at flight Reynolds numbers.

Treon et al. (Bef. 3) have shown, however, significant differences in data for the identical model, Mach
numbers, and Reynolds numbers in three different wind tunnels because of flow quality. In addition, Mabey

- (Ref. 4) has also shown that flow unsteadiness can affect both static and dynamic test results. Three pertinent
factors are involved in wind-tunnel flow quality: uniformity of free-stream velocity, uniformity of streamlines or

_'. flow angle, and free-stream disturbance level.

'_" During the past decade a comprehensive series of tests in the United States and western Europe have been:T

• performed to investigate the effects of free-stream disturbances on boundary-layer transition and Reynolds
number sealing. In a cooperative effort by the U .S. Air Force, National Aeronautics and Space Administration,
U .S. Navy, the Calspan Corp. and the governments of the United Kingdom, France, and the Netherlands, the flow

. _. disturbance levels of 23 wind tunnels (Table 1) and in flight have been documented. A sharp, slender, smooth
: cone, known as the Arnold Engineering Development Center (AEDC) 10° Transition Cone, was used. Throughout
:. the program, care was exercised to maintain the model in the same unblemished condition. The results obtained
L testify to the diligence exercised by the many test personnel who participated in this investigation. The flight-
_: test program was performed by the Dryden Flight Research Facility, Edwards, California. The resttlts of the
._. test program were enhanced because the experiments could be repeated--sometimes as long as 8 years later--in
: wind tunnels (at AEDC and Ames Research Center) whose configurations were unchanged. Likewise, selected
_- flight-test points were repeated weeks apart.

7' The tests reported here were conducted under the scrutiny and beneficial guidance of the U .S. Transition
_.;- Study Group, Prof. Eli Reshotko, Chairman. To a great extent, the credibility of the results is attributable to the

- critiques, advice, and guidance sought and received on a continuous basis from this group since 1974.
7

The wind-tunnel data from this Invest_ation were published by the individuals and organizations _nvolved
_- ' in Refs. 5 to 1Oand are summarized in Ref. 11. The flight data were reported in Ref. 12. The correlations

_" between wind-tunnel data and flight data were reported in Refs. 13 and 14. Many of these data were used in an
! independent review reported in Ref. 15.

_ 2.0 APPROACH

Transition and pressure fluctuation data wore acquired using a simple conical body and instrumentation over a
:'_'_ wide range of Reynolds and Maeh numbers at zero incidence and adiabatic wall conditions in a number of wind

tunnels and in flight. The body shape chosen was the AEDC Transition Cone, a sharp, slender cone with a sam}-
apex qngle of 5° . With the exception of the flow over a flat plate, the flow over a slender con_ at zero incidence

_ is the simplest known. At subsonic speeds, the flow experiences only a small axial favorable pressure gradient
... and virtually a zero pressure gradient at supersonic speeds after shock attachment, in addition, the cone does not
_. ' have the end effects of a fiat plate that result from the finite span of the plate, it ts relatively easier to manufacture,

•:._ and, because it does not generate much lift at low incidence, it is better suited to fltffht test.

..... The same instrumentation and techniques were used to detect the onset and the end of transition and to docu-
..- mcnt the pressure fluctuations in the wind tunnels and in flight. A traversing pitot-prcssurc probe in contact with
:'; the surface was used to detect the onset and end of transition. The pressure fluctuations at the cone surface were

measured with microphones set flush in the cone. The microphone-measured results approximate those of free-
stream condltion_ only when tht_ boundary layer is laminar.

1983006162-TSA05
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3.0 TESTAPPARATUS

The AEDC 10° Transition Cone (Fig. 1) was used for all transition and surface-pressure fluctuation measure-
ments. The cone had a eemiveriex anglo of 5° and an apex bluntness less than 0.10 mm (0.004 in) in equivalent
diameter. Th_ cone was made of stainless steel, highly polished, with a ms, face finish of 0.25 pm (10 pin) or
better. It was 91.4 cm (36,00 in) long, with a cone extension that extended the length to 113.0 em (44.50 in).

Transition was detected along the 0e ray (Fig. 1), using s traversing pitot-preasure probe (Fig. 2) in contact
with the surface. A 0.235-cm- (0.094-in-) diameter semiconductor airein-gaga transducer was close-coupled
and mounted inside the probe.

The surface-pressure fluctuations were measured, using two flush-mounted microphones at distances of
45.7 em (18.0 in) and ee.o om (26.0 in) aft of the cone apex and at azimuthal angles of q_ = 225 ° and 180°, respect-
ively (Figs. I and 3). Condenser microphones, 0.635 cm (0.25 in) in diameter, were used for most of the wind-
tunnel teats and for the low-speed portion of the flight test. For the high-speed portion of the flight teats,
0,238-cm- (0.094-in-) diameter scn dconduetor strain-gags-type microphones were used because of the higher
recovery temperatures that were reached. Overlapping data from the two types of microphones confirmed that
there was no appreciable difference in response over a bandwidth from 200 Ha to 20 kHz for the flight tests. Some
corrections to the condenser microphone data at frequencies above 40 kHz were required in the wind tunnel at
low ambient pressure. For the flight test only, a semiconductor strain-gags-type microphone, mounted on the

knee of the traversing mechanism, measured the pressure fluctuations in the free stream, as shown in Fig. 4. ]
]The cone temperature was determined it.ore an iron-eonstantan thex.mocouple spoxted in a small hole on the

turbulentl°wercenterlineboundaryraYlayeratx/L = 0.80. When recoverytransiti°nwas measured on the cone, the thermoooupic would'brtrr a .................... -_ ....._ and a turbulent factor would be applicable. 3
:-5

For the flight testa and for some wind-atonal teats, a hemispherical head-sensing probe (Fig. 1) was

!_'I mounted below and behind the cone apex to measure airspeed, free-stream static pressure, and flow incidence.A ring of orifices, 4.7 probe diameters aft of the probe tip, were used to determine free-stream static pressure.
;_ The free-stream static pressure was combined with the impact pressure from the orifice at the stagnation point to

calculate Mech number. Two pairs of orifices in the pitch and yaw planes, 40° from the stagnation point, were
used to determine angle of attack and angle of sideslip, respectively.

4.0 PROCEDURE

4.1 Flight Test

For the flight tests, the cone was mounted on the noseboom of an F-15 aircraft (Fig. 5). In order to obtain

i results that could be correlated, the flight and wind-tunnel data had to be obtained at flow conditions as nearly

identical as possible. This required that the pilot fly the airplane at a constant airspeed and altitude, keeping the
cone at zero incidence and at adiabatic conditions. An in-flight calibration of the hemispherical head-sensing
probe for airspeed and altitude wee made, using the pacer method (Ref. 16) at subsonic speeds and radar tracking

_i:i (Refs. 17 and 18) at subsonic and supersonic speeds. The probe was calibrated for angle of attack and angle of

inclination of the cone sting with respect to the aircraft centeriine was preset before flight to compensate for the

;!_ i expected aircraft trim angle of attack. Aim test-point conditions (Mach number, altitude, and trim angle of attack)
i/:_ were specified, and the pilot adjusted the airspeed to center the cone .glo-of-attaek indicator to sere.

: =_" The cone angle of sideslip was zeroed, using the rudders. Upper atmospheric temperature data fX'omearly
morning radiosonde balloons were used to calculate the aim cone adiabatic wall conditions. For Mech numbers of
1.2 and above, the cone had to be preconditioned on the ground with a hot-air heater (Fig. 6). The cone was
heated for about 1 hr, to a temperature of 105° C to 115° C (220 ° F to 240 ° F). The heater was removed Just before
takeoff, and the aircraft climb schedule was adjusted so that the cone would be at the predetermined adiabatic-
wail temperature when the aircraft reached the aim test conditions. Data from the aircraft and cone were monitored
continuously h_ real time on strip charts and video displays, and the information was relayed to the pilot. For the
lower Mach numbers, it was sometimes necessary to cool the cone. This was done by flying the aircraft at a higher
altitude and lower temperature than the test point until the desired cone adiabatic-wail temperature was reached.

A history of the free-stream conditions during a typical pitot-probe traverse ie shown in Fig. T. As can be
seen, the conditions were quite stable, with angle of attack and angle of sideslip within +_0.2° . A pitot-probe
traverse during the same test conditions is shown in Fig. 8. The onset of transition Xt was defined, as it was for
the wind-tunnel data, as the location at which the minimum pttot pressure occurred. Likewise, the end of transi-

tion XT was defined as the location at which the maximum pitot pressure occurred, Both these locations are shown
in Fig. 8.

The flight-test matrix is shown in Fig. 9. The flight data are grouped by the different aircraft trim angles that
were flown and correspond to nominal dynamic pressures. Test points at the same trim angle correspond approxi-
mately to the curves of constant unit Reynolds number, U/v. Also shown in Fig. 9 is the equivalent combined
envelope for the wind-tunnel data of this study. As can be seen, the flight data encompass most of the wind-tunnel
test data, up to a Math number of 2.0.

4.2 Wind Tunnel Tests ! -,.

: Every procedural consideration described for the flight test was present in the wind-tunnel tests, except that _I ,':the problems associated with obtaining test conditions were much simpler. The cone had to be at z_ro incidence

and adiabatic-well temperature. No thermal preconditioning was necessary, for the temperature excursions i l _i:

were not nearly so severe, end there was ample time to wait for the cone to reach thermal equilibrium with the
flow. Some wait between data points was necessary for Tw/Tew to approach 1.0, following e large Math number

.... :.. .... .,: ................................ "...... ":'-",,............. " ............ . '_' _-'__,Z._:._..:_-,:,_.',.......... _'_:..___._,_"..
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change. Usually, the sequence of te_t points could be plenned to progrea_ through small incremental changes in
Math number. Most wind tunnels could hold total temperature constant within ±3° C (.+5° F) on a given teat point,
The best ecquoncbig of point8 was to change U./v. at constant M.. in a variable-density tunnel by changing Pt

at constant T t. In atmospheric tunnels, one can only change Mw.

A bigger problem in the wind tunnels was defining the incidence angle. In some caeca, negligible flow anffu-
lsrity was assumed and the cone was simply aligned carefully to the test section centerline. In other cases, flow
angularity was known or suspected and a sot of aerodynamic centering calibrations was performed at each Math
number, using the transition variation with incidence angle when the pitot probe trace was 90° relative to the
windward stagnation ray. This was accomplished using the model pitch, yaw, and roll capabUltias of a given
wind tunnel to define vortical and horizontal components of the stream anglo. The largest stream angle found
was 1,f5° .

In general, data were acquired for a matrix of Maeh numbers and Reynolds numbers covarlng the full oper-
ating envelope of a given wind tunnel. The normal tsst-section ventilation procedures were followed for each
transonic tunnel near M. = 1.0. The minimum transonic wind-tunnel test section size was 4 by 4 ft, so wall
interference attributable to transonic bleekage phenomena was not considered (0 be a significant problem, Long
sting-support systems were used in transonic tunnels to minimise support-eystsm blockage and radiated aero-
dynamic noise influence. The sting-supported cane vibrations were generally at frequencies less than abou.
10 Hz and of amplitudes small enough that no coherent oscillations could be found in the pitot pressure that ceuld
be identified as vibratory-motion relsted.

Measurements of relative humidity in wind tunnels are not usually reliat le. The crttarion generally used for
acquiring data in these experiments was not to proceed if there was visible Yogging. However, in some cases
when dew pcinU_ were above about -23 ° C (-10 ° F) at M_ _ 1.8, indicated b:' available instrumentation, pre-

cautions were taken to verify that the indicated Af_ and U_/v_ were within the wind-tunnel calibration.

5.0 RESULTS

5.1 Laminar Instability

Indications of laminar instabilities in the boundary layer were found in the microphone power spectral density
distributions during the flight test. For purposes of illustration, the spectra obtained at two test points from all
three microphone signals (free-stream impact, forward-cone, and aft-cone) are shown in Fig. 10. In Fig. 10(a),
the forward-cone microphone was under transitional flow and the aft-cone microphone was under fully developed
turbulent flow. In fig. 10CO), the forward-cone microphone was under laminar flow and the aft-cone microphone
was under transitional flow. in all cases when the boundary layer was laminar or transitional, there was a broad
peak in the pressure-fluctuation spectra, similsr to those shown in Fig. 10. The nondimensional frequency at
which the peak occurs is denoted by F in Fig. 10; the subscripts 1 and 2 refer to the forward- aud aft-cone micro-
phones, respectively.

Power spectral densities recorded from several flights at the same nominal Mach numbers but at different
Reynolds numbers are shown in Fig. ll(a) and Co). The dominant feature in these cone boundary-layer spectra
is the peak, which decreases in frequency and increases in power as Re;e increases at a given Me . Finally, at the

location near the end of transition, X T , the peak disappears into the smooth, broadband spectrum characteristic
of a turbulent boundary layer.

The spectral peaks appeared to exhibit a prescribed behavior in terms of the variation of absolute frequency

fwith Me, as shown in Fig. 12 for a dynamic pressure of 14.4 kN/m 2 (300 lb/fl2). The peak center-frequencies

increase as Me increases. A ratio of the frequencies fl/f2 , when peaks occurred in the spectra from both micro-
phones at a given flight condition, was approximately the inverse of the ratio of the distance from the cone apex,

(;e2/L)/(;el/L), and therefore the inverse of the microphone Reynolds number, Re;e2/Re;e 1• Hence, the peak
frequencies are functions of both Re x and Me .

The nondimensional peak center-.frequencies are shown in Fig. 13, plotted as a function of (Re x) 0.50 they

show a clear dependence on Reynolds number and Mach number. The data agree well with recent calculations by
: Mack, since his publication of Ref. 19 adjusted by the usual cone-planar similarity rule (where the Reynolds

number on a cone is 3 times that on a fiat plate). The calculations by Mack are for the first-mode laminar lnsta- !
bility, that is, Tollmien-Schliehting waves, and the calculations agree :_ith the characteristics of the spectra; thus,
Tollmien-Schlichting waves arc probably the cause of transition.

A reexamination of the wind-tunnel power _pectral distributions after the flight test revealed indications of
Tollmicn-Schlichting instabilities in two Langley wind tunnels, the 4- by 4-fi supersonic pressure tunnel and the

_ Unitary Plan Wind Tunnel, where the pressure fluctuation levels,_ps2/q,, were the lowest measured. Microphone I
- spectra for the 4- by 4-fl supersonic pressure tunnel at Langley Research Center for a Mach number of 1.61 are

• 'i shown in Fig. 14. These data are either for a laminar or transitional boundary layer. Broad peaks in tile spectra,

",.,._ similar to those observed in flight, are evident for the forward microphone at RCxl = 4.41 × 106 and at
=

"_.:': Rex2 4.26 X 106 for the eft microphone.

; i

•i ........ ..... _.. _.-_..'_::-_..-=......:-............. _..-=..,=._._.:...__:,__.___=, .......................... -.....................=_.......................=............
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.r

: In preparation for the flight teats, the effect of in.3idence on transition location was date_nined in various
• _7 NASA wind tunnels (Fig. 15). Note that at small negative angles of attack, with the surface pitot probe on the

.,- windward ray, the effect is small for Math numbers between 0.6 and 2,2. The effect of sideslip c_trtbe atgnifi-
:F. cant at angles ffeeater than 0.25 ° ,

,-_

•. During the flight tests, it was possible to control the temperature of the transition cone within _et of the

_;_ adisbatic-wsil tel_perature, Taw, for about 90_ of the test points, using the techniques described in 8ec. 4.1

i_._ (Flight Test). Even this small deviation in temperature had a large influence on transition location, however, as
.. shown in Fig. Is. The data have been grouped by Math number and nondimenstonaliged by the transition

r._ Reynolds number corrected to adiabatic-wall temperature determined from fairinge of the flight data for each
_" nominal Math number. The sensitivity of transition Reynolds number to heat transfer appears to have been

rZ,_ essentially independent of Math number and proportional to the temperattwe ratio Tw/Taw. The trend of the
_. data in Fig. 16 shows a strong heat-transfar influence on transition, delayed transition occurring when the

,' boundary layer was cooled (Tw/Taw < 1.0), earlier transition occurxqng when the boundary layer was heated

';" ' (Tw/Taw > 1.0). Also shown in Fig. le are d_ba obtained during a rapid excursion of total temperature at
_ bt = 1.2 in the 4-fl transonic (4T) wind tunnel at ABDC. These wind tunnel results show the same trend as the

2 flight data. According to the theoretical fiat-plate e 9 method from Ref. 20, the onset of transition at a Math
number of 0.85 also follows the trend of the flight data. A curve was fitted through the flight data and used fox,

: correcting nonadisbatic data to adiabatic conditions.

--_: The end-of-_ansition Reynolds numbers meastwed in flight _ corrected to lidiabaUc-Wsi_ tampe_aturas, are
_ _ shown as functions of local Math number in Fig. 17. This figure includes 82 test points (39 of which were
_- acquired at supersonic speeds) gathered from 27 flights over 2 1/_ months. The data form a nearly linear band

:"_ for both the _nd-of-transiUon and the ormet-of-transiticr_ Reynolds numbers. Both were strong functions of Math

:.:_ number. End-of-transition Reynolds numbers ranged fxom about 3.5 X 106 at a Math number of 0.5 to above

Y 9.0 X 106 at Mach numbers above 1.6. Actual measurements of X t, X T, and the corresponding flight conditions• .. .

:>_ ewe tabulated in Ref. 12, together with the corrected values of end-of-transition Reynolds number Re T, and

,; onset-of-transition Reynolds number Re t. Figure 18 shows that the ratio of onset-of-transition Reynolds number
"_'. to end-of-transition Reynolds number is independent of Mash number and dynamic pressure and has a mean value

of 0.86. Most of the data are within -+5_of this mean value.

_ _ _ Transition Reynolds number was plotted as a function of unit Reynolds number in Fig. 19 for nominal Math
-: numbers to determine whether the present data had the unit Reynoids number effect shown for higher Math
%_" numbers in Refs. 11, 21, and 22. Even at Mach numbers at which there were substantial da'_a over a wide range

,:. of unit Reynolds numbers at adiabatic conditions, the data are inconclusive.

:_. 5. _ Flight Disturbance Environment

Naturally growing Tollmien-Sohliohting waves can be detected only in a low-disturbance, fras-stream environ-
:.... ment. As shown by the overall pressure fluctuations from the free-stream impact microphone (Fig. 20), the level
:_.. of pressure fluctuations in the ,.3ighi environmen_ was very low. The pressure fluctuations in flight varied from
•.._ about 0.16_ at the lower Maeh numbers to 0.017_ near Mach 2, when normalised by the frae-stretun dynamic i
•._ pressure qw" The different flags on th, -_mbois, which denote flights made on different days, indicate the day- i

to-day variations in the atmosphere. The. -essure fluctuations do not seem to be dominated by engine noise,
:_- although some discrete tones appeared randomly in the _pectra, some of which may have come from the engine i

_" inlets, fans, or compressors.%
:._r The cone surface static-pressuro fluctuations in the boundary layer were sensed by the surface microphones ]
_,- set flush in the cone. When the cone boundary layer was turbulent, the cone-surface microphones recorded
"" pressure fluctuations in the near-field turbulent boundary layer. When the boundary layer was transitional, the

amplification of the low end of the frequency spectrum .during transition produced large overall values of indicated '1
_" pressure fluctuation. Only dnder laminar conditions could the cone-surface microphones _hedshre prdssure
:_ ! fluctuations imposed from the free stream, and those measurements were altered by the laminar boundary-layer t
: receptivity. A_ the spectral data in Figs. 10 and 11 show, the isminsr boundary layer selectively amplifies I

_._:_ certain frequencies in the epectrum, increasing some of the values sensed by the microphone, i

k

The cone-surface etatic-preesure fluctuations in the Laminar boundary layer _z are ehown normalized by_:
::i q. in Fig. 21 as a function of Me. As shown, the laminar pressm'e fluctuations decrease with increasing Me" A

!

_ comparison of Figs. 20 and 21 shows that st the highest Me the ease-surface pressure fluctuation le essentially

_ the same as the free-stream impact-pressure fluctuation. The differences between the cone-surface and free- ,
:;_.. stream impact-pressure fluctuation amplitudes increase as Me decreases. As before, the different flags on the '

i__.. symbols (Fig. 20) denote flights on different days to indiccte day-to-day variations. The open symbols denote
•. data acquired with the semiconductor strain-gage~type microphones used at the higher Math numbers and higher
" -- temperatures. The solid symbols denote data acquired with conden,er microphones like those used in most cf the
. wind tunnels. The data from both types of microphones agree well. The laminar and transitional spectra
.-__ _" measured by both sets of mierophwms had the same characteristics, verifying that the peaks were associated with

• the boundary layer and that they were not anomalies introduced by t}le sensors.

I
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5.4 Co.elation of Wind Tunnel and Flight Data

The wind tunnels used in these experiments wore classified into four _oups, based on their distinguishing
geometry:

Group 1: Slotted or solid-wall transonic and subsonic tunnels
Group 2; Porforatod-wafl transonic tunnels
Group 3: Two-dimenevlonsl-noszle supersonic tunnels
Group 4: Sliding-blovk-noasle supersonic tunnels

The pressure fluctuation levels measured under the laminar boundary layer on the cone from the wind tunnels
are shown in Fig. 23. A_do shown is an envelope for the flight pressure fluctuation data from Fig. 31. The
dashed curve in Fig. 23 is a relationship from Lowson (Ref. 33) for satimaling the pr,_ssure fluctuations at the
wall beneath an attached turbulent boundary layer. The microphones on the cone so;lee pressure fluctuations
from all sources, including the wind-tunnel walls. As shown in Fig. 32(a), essentially all the data from the lower
disturbance tunnels (gl'oups 1, 3, and 4) are below this curve. However, the flow distur;)anee measured in the
lower disturbance tunnels was about twice that measured in flight. For the higher disturbance tunnels (group 2,
Fig. 33Co)), the flow disturbance is greater than Lowson*s curve and approximately an order of magnitude greater
than the flight data.

The end-of-teanaltion Reynolds number Re T is presented in Fig. 23 for the group 1, 3, and 4 wind tunnels.
The wind-tunnel data haste been extrapolated for nominal unit Reynolds numbers of 6.0 X 106/m (2.0 X 106/fl),

9.0 X 106/m (3.0 X 106/ft), and 13.1 X 106/m (4.0 X 106/fl). There is a 14_ increase in Re T for unit Reynolds

numbers between 6.6 X 106/m (3.0 X 10a/t) and 13.1 X 106/m (4.0 X 10a/t) at supersonic speeds in the wind
tunnels. The end-of-transition Reynolds numbers fl,om the lower disturbance tunnels (groups 1, 3, and 4) a_'ee :'I

well with the flight data up to Me = 1.2. Above Me = 1.2, the eorrelstion deteriorates, and at Me = 1.6 the flight

Re T is 25_ to 30_ higher than the wind-tunnel Re T. For the higher disturbance tunnels (group 3), s_vwn in
Fig. 24, there is a very poor correlation between wind-tunnel and flight end-of-transition Reynolds numbers.

The onset-of-transition Reynolds numbers from the lower disturbance wind tunnels is shown in Fig. 25. The
flight data from Fig. 17(1)) are shown by the envelope. At subsonic speeds, the data from the Naval Ship
Reseat, oh and Development Center (NSRkDC) tunnel showed good correlation with the flight data. The onset-of-
transition Reynolds number_ from the Langley 16-fl transonic dynamics tunnel (NASA/Langley 16 TDT) were lower
than those of most of the flight data. Unfortunately, onset of transition from the several other lower disturbance
tunnels at transonic speed was either poorly defined by the surface pitot-pressure-probe technique or lost because
of poor pitot-probe contact with the cone surface.

The ratio of onset-of-transition Reynolds number to end-of-transition Reynolds numbers is shown in Fig. 26 for
the wind tunnels. The flight data are represented by the fairings. The wind-tunnel ratios of onset-of-transition to

end-of-transition Reynolds numbers arc less than those in flight at unit Reynolds numbers of 0.6 × 106/m

(2.0 × 106/fl) and 0.8 X 106/m (3.0 × 106/fl) between Math numbers of 0.5 to 2.0. At a unit Reynolds number of

13.1 × 106/m (4.0 X 10a/t) the correlation between flight and wind tunnel data is much better. This unit Reynolds
number effect was not observed in flight, even though it covered approximately the same Reynolds number range.

The end-of-transition Reynolds number as a function of the flow disturbance levels from wind tunnel and flight
data are presented in Fig. 27. This figure includes data from all Math numbers and unit Reynolds numbers. The
end-of-transition Reynolds number correlated within ±30_ with the surface fluctuating loot-mean-square pressure
level according to the equation

0]0ReT=3.?X 106 10

6.0 CONCLUDING REMARKS

Transition and fluctuating pressure data were acquired on a standard body (AEDC Transition Cone), using
the same instrumentation and technique over a wide range of Mash trod Reynolds numbers in 23 wind tunnels and
in flight. The cone was held at near zero incidence and heat transfer. Transition was detected with a traversing
pitot-pressure probe in contact with the surface. The pressure fluctuations at the cone surface were measured
with microphones set flush in the cone surface.

There was good correlation betwcmi end-of-transition Reynolds numbers Re T obtained in the lower disturbance

wind tunnels and those obtained in flight, up to about Me = 1.2. Above Mc = 1.2, the correlation deteriorates, with

the flight Re T being 25_ to 30_ higher than the wind tunnel Re T st Me = 1.6. For the higher disturbance tunnels,

there was very poor correlation between tunnel and flight Re T. The end-of-transition Reynolds number correlated
within -+20_ with the surface-fluctuating root-mean-square pressure level, according to the equation

0]-0.,,Re T = 3.7 X 106 10 'i"_
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Broad peaks in the spectra indicated that Tollmien-Schllchting waves were the probable cause of transition !
in flight and at least tn some of the wind tunnels. The flow disturbance measured beneath the laminar boundary t
layer on the cone in the lower disturbance tunnels was about twice that measured it flight. In the higher dia- l
turbono0 tunnels, it was approximately an order of magnitude greater then the flight data, i

The flight data showed a strong heat-treader influence on transition, a delayed transition oeaurring when _i
the boundary layer was cooled, and an earlier transition oecurr/ng when the boundary layer was heated, i

t
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